Part Number Hot Search : 
BFXXXX DT54FCT MC144 MIC5021 01VDK3 MAX6367 3007D KSS341W
Product Description
Full Text Search
 

To Download ML483 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 ML483
0.7 - 1.0 GHz High IP3 Mixer with Integrated LO Amp Applications
* * * * * 2G/3G/4G Wireless Infrastructure Base station Transceivers / Repeaters GSM / CDMA / WCDMA / LTE HPA Feedback Paths ISM (industrial, scientific and medical)
8-pin MSOP-8 package
Product Features
* * * * * * * * * High dynamic range mixer with integrated LO driver +36 dBm Input IP3 9 dB Conversion Loss RF: 700 - 1000 MHz LO: 540 - 1300 MHz IF: 70 - 300 MHz +5V Supply @ 50 mA 0 dBm Drive Level RoHS-compliant MSOP-8 (14mm2)
Functional Block Diagram
LO
1 2 3 4
8 RF 7 GND 6 GND 5 IF
GND
GND
Vcc
General Description
The ML483 high linearity converter combines a passive GaAs FET mixer with an integrated LO driver in an ultrasmall lead-free/green/RoHS-compliant MSOP-8 package. The double-balanced integrated IC is able to operate across a 0.7-1.0 GHz frequency range to achieve +36 dBm Input IP3 while drawing a very low 50mA current. The ML483 can be used as an upconverter or downconverter in a lowside or high-side LO configuration. A LO buffer amplifier is integrated on the chip to allow for operation directly from a synthesizer requiring only 0 dBm of drive level. The dual-stage LO driver provides a stable input power level into the mixer to allow for consistent performance over a wide range of LO power levels. The converter requires no external baluns and supports a wide range of IF frequencies. Typical applications include frequency up/down conversion, modulation and demodulation for receivers and transmitters used in 2.5G and 3G mobile infrastructure. Due to the wide frequency range of operation, the converter can also be used for ISM and fixed wireless applications. The ML483 is footprint and pin compatible with TriQuint's 1.6-3.2 GHz ML485 mixer for high band applications.
Pin Configuration
Pin #
1 4 5 8 2, 3, 6, 7 Backside Paddle
Symbol
LO Vcc IF RF GND GND
Ordering Information
Part No.
ML483-G ML483-PCB
Description
0.7-1.0 GHz Mixer
Fully Assembled Evaluation PCB Standard T/R size = 1000 pieces on a 7" reel. Data Sheet: Rev C 03/23/10 (c) 2010 TriQuint Semiconductor, Inc. - 1 of 8 Disclaimer: Subject to change without noticee Connecting the Digital World to the Global Network(R)
ML483
0.7 - 1.0 GHz High IP3 Mixer with Integrated LO Amp Specifications Absolute Maximum Ratings
Parameter
Storage Temperature Thermal Resistance (jnc. to case) jc Vcc LO Power RF Input Power, CW, 50 ,T = 25C
Recommended Operating Conditions
Parameter
Vcc Icc Case Temperature Max TJ (for 106 hours MTTF) RF Input Power
Rating
-65 to 150 oC 81 oC/W +7 V +10 dBm +27 dBm
Min
4.75 -40
Typ
5 50 150
Max Units
5.25 85 +10 V mA o C o C dBm
Operation of this device outside the parameter ranges given above may cause permanent damage.
Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.
Electrical Specifications
Test conditions unless otherwise noted: 25 C, 0 dBm LO drive, IF = 140 MHz , Vcc = +5V in a downconverting configuration with a high-side LO
Parameter
RF Frequency Range LO Frequency Range IF Frequency Range SSB Conversion Loss [2] Input IP3 [1] [2] LO leakage at RF port LO leakage at IF port RF - IF Isolation Return Loss: RF Port Return Loss: IF Port Return Loss: LO Port Input P1dB LO Drive Level Operating Supply Voltage Operating Current
Units
MHz MHz MHz dB dBm dBm dBm dB dB dB dB dBm dBm V mA
Min
Typ
700-800 770-1040 70-240 9.2 +37 -17 -11 12.5 13 11 11 +24 0 +5 50
Max
Min
Typ
800-1000 870-1240 70-240 8.6 +36 -18 -15 16 16 12 14 +23.5 0 +5 50
Max
10.5
+30
-4
+4
-4
+4
Notes: 1. IIP3 is measured with f = 1 MHz with RFin = 0 dBm / tone. 2. Min/Max conditions tested with LO=1041 MHz, RF=901 MHz, IF=140 MHz
Data Sheet: Rev C 03/23/10 (c) 2010 TriQuint Semiconductor, Inc.
- 2 of 8 -
Disclaimer: Subject to change without noticee Connecting the Digital World to the Global Network(R)
ML483
0.7 - 1.0 GHz High IP3 Mixer with Integrated LO Amp Device Characterization Data Spur Table
All spur tables are N x fRF - M x fLO mixer spurious products for 0 dBm input power, unless otherwise noted. RF Freq = 900 MHz LO Freq = 1041 MHz All values relative to the IF power level.
M 0 N 0 1 2 3 4 5
-8 dBc 54 dBc 85 dBc 99 dBc 101 dBc
1
8 dBc 0 dBc 59 dBc 91 dBc 100 dBc 100 dBc
2
13 dBc 43 dBc 44 dBc 87 dBc 100 dBc 97 dBc
3
15 dBc 19 dBc 65 dBc 79 dBc 99 dBc 99 dBc
4
10 dBc 34 dBc 53 dBc 91 dBc 100 dBc 99 dBc
5
9 dBc 22 dBc 64 dBc 84 dBc 98 dBc 100 dBc
Application Circuit
Notes: 1. See PC Board Layout, page 6 for more information.
Bill of Material
Reference Desg.
U1 C1 C2
Value Description
0.01 uF High IP3 Mixer with LO Amp Chip, 0603, 50V, 5%, NPO Do Not Place
Manufacturer
TriQuint various
Part Number
ML483-G
Data Sheet: Rev C 03/23/10 (c) 2010 TriQuint Semiconductor, Inc.
- 3 of 8 -
Disclaimer: Subject to change without noticee Connecting the Digital World to the Global Network(R)
ML483
0.7 - 1.0 GHz High IP3 Mixer with Integrated LO Amp Typical Performance 0.7-1.0 GHz
Performance using the circuitry on the ML483-PCB evaluation board.
Conversion Loss vs RF Freq. vs If Freq.
+25oC, LO=0dBm, high-side LO
Input IP3 vs RF Freq. vs IF Freq.
+25oC, LO=0dBm, high-side LO
Input P1dB vs RF Freq.
+25oC, IF=140MHz, LO=0dBm, high-side LO
16
Conversion Loss (dB) Input IP3 (dBm)
42 40 38 36 34 32 700 750 800 850 900 RF Frequency (MHz)
LO=0dBm, IF=70MHz, high-side LO
Input P1dB (dBm)
28 240 MHz 140 MHz 70 MHz 26 24 22 20 18 700 750 800 850 900 RF Frequency (MHz) 950 1000 700 750 800 850 RF Frequency (MHz) 900 950
14 12 10 8 6 4
240 MHz 140 MHz 70 MHz
950
1000
Conversion Loss vs RF Freq. vs Temp.
16
Conversion Loss (dB) Conversion Loss (dB)
Conversion Loss vs RF Freq. vs Temp.
LO=0dBm, IF=140MHz, high-side LO
Conversion Loss vs RF Freq. vs Temp.
LO=0dBm, IF=240MHz, high-side LO
16
Conversion Loss (dB)
16 +85C +25C -40C 14 12 10 8 6 4 700 750 800 850 900 RF Frequency (MHz)
+25oC, IF=140MHz, high-side LO
14 12 10 8 6 4 700 750
+85C +25C -40C
14 12 10 8 6 4
+85C +25C -40C
800 850 900 RF Frequency (MHz)
+25oC, IF=70MHz, high-side LO
950
1000
950
1000
700
750
800 850 900 RF Frequency (MHz)
+25oC, IF=240MHz, high-side LO
950
1000
Conversion Loss vs RF Freq. vs LO Power
16
Conversion Loss (dB) Conversion Loss (dB)
Conversion Loss vs RF Freq. vs LO Power
16
Conversion Loss (dB)
Conversion Loss vs RF Freq. vs LO Power
16
14 12 10 8 6 4 700 750
+4 dBm 0 dBm -4 dBm
14 12 10 8 6 4
+4 dBm 0 dBm -4 dBm
14 12 10 8 6 4
+4 dBm 0 dBm -4 dBm
800 850 900 RF Frequency (MHz)
950
1000
700
750
800 850 900 RF Frequency (MHz)
950
1000
700
750
800 850 900 RF Frequency (MHz)
950
1000
Data Sheet: Rev C 03/23/10 (c) 2010 TriQuint Semiconductor, Inc.
- 4 of 8 -
Disclaimer: Subject to change without noticee Connecting the Digital World to the Global Network(R)
ML483
0.7 - 1.0 GHz High IP3 Mixer with Integrated LO Amp Typical Performance 0.7-1.0 GHz
Performance using the circuitry on the ML483-PCB evaluation board.
Input IP3 vs RF Freq. vs Temp.
LO=0dBm, IF=70MHz, high-side LO
Input IP3 vs RF Freq. vs Temp.
LO=0dBm, IF=140MHz, high-side LO
Input IP3 vs RF Freq. vs Temp.
LO=0dBm, IF=240MHz, high-side LO
42
Input IP3 (dBm)
Input IP3 (dBm)
40 38 36 34 32 700
40 38 36 34 32
Input IP3 (dBm)
+85C +25C -40C
42
+85C +25C -40C
42 40 38 36 34 32 +85C +25C -40C
750
800 850 900 RF Frequency (MHz)
+25oC, IF=70MHz, high-side LO
950
1000
700
750
800 850 900 RF Frequency (MHz)
950
1000
700
750
800 850 900 RF Frequency (MHz)
950
1000
Input IP3 vs RF Freq. vs LO Power
42
Input IP3 (dBm)
Input IP3 vs RF Freq. vs LO Power
+25oC, IF=140MHz, high-side LO
Input IP3 vs RF Freq. vs LO Power
+25oC, IF=240MHz, high-side LO
Input IP3 (dBm)
40 38 36 34 32 700 750
40 38 36 34 32
Input IP3 (dBm)
+4 dBm 0 dBm -4 dBm
42 +4 dBm 0 dBm -4 dBm
42 40 38 36 34 32 700 750 800 850 900 RF Frequency (MHz)
+25oC, LO = 0 dBm
+4 dBm 0 dBm -4 dBm
800 850 900 RF Frequency (MHz)
+25oC, LO = 0 dBm
950
1000
950
1000
700
750
800 850 900 RF Frequency (MHz)
+25oC, LO = 0 dBm
950
1000
RF Return Loss vs RF Freq.
25
RF Return Loss (dB)
IF Return Loss vs IF Freq.
25
IF Return Loss (dB)
LO Return Loss vs LO Freq.
25
LO Return Loss (dB)
20 15 10 5 0 700 750
70 MHz 140 MHz 240 MHz
20 15 10 5 0
RF = 700 MHz RF = 800 MHz RF = 900 MHz RF = 1000 MHz
20 15 10 5 0
800 850 900 RF Frequency (MHz)
Referenced with LO=0dBm
950
1000
70
100
130 160 190 IF Frequency (MHz)
Referenced with LO=0dBm
220
250
750
850
950 1050 LO Frequency (MHz)
Referenced with LO=0dBm
1150
1250
L-R Isolation vs LO Freq. vs Temp.
30
L-R Isolation (dB)
L-I Isolation vs LO Freq. vs Temp.
30
L-I Isolation (dB)
R-I Isolation vs LO Freq. vs Temp.
30
R-I Isolation (dB)
25 20 15 10 5 750
+85C +25C -40C
25 20 15 10 5
+85C +25C -40C
25 20 15 10 5
+85C +25C -40C
850
950 1050 LO Frequency (MHz)
1150
1250
750
850
950 1050 LO Frequency (MHz)
1150
1250
750
850
950 1050 LO Frequency (MHz)
1150
1250
Data Sheet: Rev C 03/23/10 (c) 2010 TriQuint Semiconductor, Inc.
- 5 of 8 -
Disclaimer: Subject to change without noticee Connecting the Digital World to the Global Network(R)
ML483
0.7 - 1.0 GHz High IP3 Mixer with Integrated LO Amp Pin Description
LO
1 2 3 4
8 RF 7 GND 6 GND 5 IF
GND
GND
Vcc
Pin
1 2 3 4 5 6 7 8
Symbol
LO GND GND Vcc IF GND GND RF Backside Paddle
Description
Local Oscillator (LO) Input. Internally matched to 50 . Internally DC blocked. External blocking not required. Ground Ground Positive Supply Voltage. Requires capacitive decoupling at pin. Intermediate Frequency (IF) Output. Internally matched to 50 . No Internal DC blocking. External blocking cap required if DC present. Ground Ground RF Input. Internally matched to 50 . No Internal DC blocking. External blocking cap required if DC present. Ground
Applications Information PC Board Layout
Top RF layer is .014" FR4, r = 4.3, 4 total layers (0.062" thick) for mechanical rigidity. Metal layers are 1-oz copper. Microstrip line details: width = .026", spacing = .026". The ML483 application board is easy to use requiring only 1 external decoupling cap. This cap should be placed as close as possible to Vcc pin 4. All three ports use 50 microstrip. There are 5 grounding vias that are not shown. The backside paddle requires these 5 vias for good RF grounding. The mechanical configuration diagram on the next page illustrates proper placement of these vias. The pad pattern shown has been developed and tested for optimized assembly at TriQuint Semiconductor. The PCB land pattern has been developed to accommodate lead and package tolerances. Since surface mount processes vary from company to company, careful process development is recommended. For further technical www.TriQuint.com information, Refer to
Data Sheet: Rev C 03/23/10 (c) 2010 TriQuint Semiconductor, Inc.
- 6 of 8 -
Disclaimer: Subject to change without noticee Connecting the Digital World to the Global Network(R)
ML483
0.7 - 1.0 GHz High IP3 Mixer with Integrated LO Amp Mechanical Information Package Information and Dimensions
This package is lead-free/green/RoHS-compliant. The plating material on the leads is matte tin. It is compatible with both lead-free (maximum 260 oC reflow temperature) and lead (maximum 245 oC reflow temperature) soldering processes. The component will be laser marked with a "M43" product label with an alphanumeric lot code on the top surface of the package.
M43 YXX
Notes: 1. 2. 3.
All dimensions are in millimeters (inches). Package length does not include mold flash, protrusions or gate burr. Package width does not include interlead flash or protrusions.
Mounting Configuration
All dimensions are in millimeters (inches). Angles are in degrees.
Notes: 1. Vias shown use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010"). Other via sizes are possible. 2. To ensure reliable operation, device ground paddle-to-ground pad solder joint is critical. 3. RF trace width for 50 depends upon the PC board material and construction.
Data Sheet: Rev C 03/23/10 (c) 2010 TriQuint Semiconductor, Inc.
- 7 of 8 -
Disclaimer: Subject to change without noticee Connecting the Digital World to the Global Network(R)
ML483
0.7 - 1.0 GHz High IP3 Mixer with Integrated LO Amp Product Compliance Information ESD Information Solderability
Compatible with the latest version of J-STD-020, Lead free solder, 260 ESD Rating: Value: Test: Standard: ESD Rating: Value: Test: Standard: Class 1A Passes/ 250 V to < 500 V Human Body Model (HBM) JEDEC Standard JESD22-A114 Class 3 Passes 500 V to < 1000 V Charged Device Model (CDM) JEDEC Standard JESD22-C101 This part is compliant with EU 2002/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment). This product also has the following attributes: * Lead Free * Halogen Free (Chlorine, Bromine)
MSL Rating
Level 2 at +260 C convection reflow. The part is rated Moisture Sensitivity Level 2 at 260C per JEDEC standard IPC/JEDEC J-STD-020.
Contact Information
For the latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint: Web: www.triquint.com Email: info-sales@tqs.com For technical questions and application information: Email: sjcapplication.engineering@tqs.com Tel: Fax: +1.503.615.9000 +1.503.615.8902
Important Notice
The information contained herein is believed to be reliable. TriQuint makes no warranties regarding the information contained herein. TriQuint assumes no responsibility or liability whatsoever for any of the information contained herein. TriQuint assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for TriQuint products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. TriQuint products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.
Data Sheet: Rev C 03/23/10 (c) 2010 TriQuint Semiconductor, Inc. - 8 of 8 Disclaimer: Subject to change without noticee Connecting the Digital World to the Global Network(R)


▲Up To Search▲   

 
Price & Availability of ML483

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X